Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Magn Reson Med ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725430

ABSTRACT

PURPOSE: To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS: The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS: The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from 8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to 8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from 2 × 31 $$ 2\times 31 $$ min to 2 × 23 $$ 2\times 23 $$ min. CONCLUSION: The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.

2.
Neurology ; 102(9): e209277, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38630962

ABSTRACT

BACKGROUND AND OBJECTIVES: Intramuscular fat fraction (FF) assessed using quantitative MRI (qMRI) has emerged as one of the few responsive outcome measures in CMT1A suitable for future clinical trials. This study aimed to identify the relevance of multiple qMRI biomarkers for tracking longitudinal changes in CMT1A and to assess correlations between MRI metrics and clinical parameters. METHODS: qMRI was performed in CMT1A patients at 2 time points, a year apart, and various metrics were extracted from 3-dimensional volumes of interest at thigh and leg levels. A semiautomated segmentation technique was used, enabling the analysis of central slices and a larger 3D muscle volume. Metrics included proton density (PD), magnetization transfer ratio (MTR), and intramuscular FF. The sciatic and tibial nerves were also assessed. Disease severity was gauged using Charcot Marie Tooth Neurologic Score (CMTNSv2), Charcot Marie Tooth Examination Score, Overall Neuropathy Limitation Scale scores, and Medical Research Council (MRC) muscle strength. RESULTS: Twenty-four patients were included. FF significantly rose in the 3D volume at both thigh (+1.04% ± 2.19%, p = 0.041) and leg (+1.36% ± 1.87%, p = 0.045) levels. The 3D analyses unveiled a length-dependent gradient in FF, ranging from 22.61% ± 10.17% to 26.17% ± 10.79% at the leg level. There was noticeable variance in longitudinal changes between muscles: +3.17% ± 6.86% (p = 0.028) in the tibialis anterior compared with 0.37% ± 4.97% (p = 0.893) in the gastrocnemius medialis. MTR across the entire thigh volume showed a significant decline between the 2 time points -2.75 ± 6.58 (p = 0.049), whereas no significant differences were noted for the 3D muscle volume and PD. No longitudinal changes were observed in any nerve metric. Potent correlations were identified between FF and primary clinical measures: CMTNSv2 (ρ = 0.656; p = 0.001) and MRC in the lower limbs (ρ = -0.877; p < 0.001). DISCUSSION: Our results further support that qMRI is a promising tool for following up longitudinal changes in CMT1A patients, FF being the paramount MRI metric for both thigh and leg regions. It is crucial to scrutinize the postimaging data extraction methods considering that annual changes are minimal (around +1.5%). Given the varied FF distribution, the existence of a length-dependent gradient, and the differential fatty involution across muscles, 3D volume analysis appeared more suitable than single slice analysis.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Charcot-Marie-Tooth Disease/diagnosis , Muscle, Skeletal , Lower Extremity , Thigh , Magnetic Resonance Imaging/methods
3.
AJNR Am J Neuroradiol ; 45(4): 494-503, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38548305

ABSTRACT

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving rapid motor neuron degeneration leading to brain, primarily precentral, atrophy. Neurofilament light chains are a robust prognostic biomarker highly specific to ALS, yet associations between neurofilament light chains and MR imaging outcomes are not well-understood. We investigated the role of neurofilament light chains as mediators among neuroradiologic assessments, precentral neurodegeneration, and disability in ALS. MATERIALS AND METHODS: We retrospectively analyzed a prospective cohort of 29 patients with ALS (mean age, 56 [SD, 12] years; 18 men) and 36 controls (mean age, 49 [SD, 11] years; 18 men). Patients underwent 3T (n = 19) or 7T (n = 10) MR imaging, serum (n = 23) and CSF (n = 15) neurofilament light chains, and clinical (n = 29) and electrophysiologic (n = 27) assessments. The control group had equivalent 3T (n = 25) or 7T (n = 11) MR imaging. Two trained neuroradiologists performed blinded qualitative assessments of MR imaging anomalies (n = 29 patients, n = 36 controls). Associations between precentral cortical thickness and neurofilament light chains and clinical and electrophysiologic data were analyzed. RESULTS: We observed extensive cortical thinning in patients compared with controls. MR imaging analyses showed significant associations between precentral cortical thickness and bulbar or arm impairment following distributions corresponding to the motor homunculus. Finally, uncorrected results showed positive interactions among precentral cortical thickness, serum neurofilament light chains, and electrophysiologic outcomes. Qualitative MR imaging anomalies including global atrophy (P = .003) and FLAIR corticospinal tract hypersignal anomalies (P = .033), correlated positively with serum neurofilament light chains. CONCLUSIONS: Serum neurofilament light chains may be an important mediator between clinical symptoms and neuronal loss according to cortical thickness. Furthermore, MR imaging anomalies might have underestimated prognostic value because they seem to indicate higher serum neurofilament light chain levels.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Male , Humans , Middle Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Retrospective Studies , Prospective Studies , Intermediate Filaments , Motor Neurons/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology
5.
Magn Reson Med ; 91(3): 926-941, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37881829

ABSTRACT

PURPOSE: Sodium (23 Na) multi-quantum coherences (MQC) MRI was accelerated using three-dimensional (3D) and a dedicated five-dimensional (5D) compressed sensing (CS) framework for simultaneous Cartesian single (SQ) and triple quantum (TQ) sodium imaging of in vivo human brain at 3.0 and 7.0 T. THEORY AND METHODS: 3D 23 Na MQC MRI requires multi-echo paired with phase-cycling and exhibits thus a multidimensional space. A joint reconstruction framework to exploit the sparsity in all imaging dimensions by extending the conventional 3D CS framework to 5D was developed. 3D MQC images of simulated brain, phantom and healthy brain volunteers obtained from 3.0 T and 7.0 T were retrospectively and prospectively undersampled. Performance of the CS models were analyzed by means of structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR) and signal quantification of tissue sodium concentration and TQ/SQ ratio. RESULTS: It was shown that an acceleration of three-fold, leading to less than 2 × 10 $$ 2\times 10 $$ min of scan time with a resolution of 8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ at 3.0 T, are possible. 5D CS improved SSIM by 3%, 5%, 1% and reduced RMSE by 50%, 30%, 8% for in vivo SQ, TQ, and TQ/SQ ratio maps, respectively. Furthermore, for the first time prospective undersampling enabled unprecedented high resolution from 8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ to 6 × 6 × 10 mm 3 $$ 6\times 6\times 10\;{\mathrm{mm}}^3 $$ MQC images of in vivo human brain at 7.0 T without extending acquisition time. CONCLUSION: 5D CS proved to allow up to three-fold acceleration retrospectively on 3.0 T data. 2-fold acceleration was demonstrated prospectively at 7.0 T to reach higher spatial resolution of 23 Na MQC MRI.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Prospective Studies , Retrospective Studies , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Sodium , Image Processing, Computer-Assisted/methods
6.
Brain Sci ; 13(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37891767

ABSTRACT

The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.

7.
Eur J Radiol ; 166: 110999, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37499477

ABSTRACT

PURPOSE: Therapeutic management of parotid gland tumours depends on their histological type. To aid its characterisation, we sought to develop automated decision-tree models based on multiparametric magnetic resonance imaging (MRI) parameters and to evaluate their added diagnostic value compared with morphological sequences. METHODS: 206 MRIs from 206 patients with histologically proven parotid gland tumours were included from January 2009 to January 2018. Multiparametric MRI findings (including parameters derived from diffusion-weighted imaging [DWI] and dynamic contrast-enhanced [DCE]) were used to build predictive classification and regression tree (CART) models for each histological type. All MRIs were read twice: first, based on morphological sequence findings only, and second, with the addition of multiparametric sequences and CART findings. The diagnostic performance between these two readings was compared using ROC curves. RESULTS: Compared to morphological sequences alone, the addition of multiparametric analysis significantly increased the diagnostic performance for all histological types (p < 0.001 to p = 0.011), except for lymphomas, where the increase was not significant (AUC 1.00 vs. 0.99, p = 0.066). ADCmean was the best parameter to identify pleomorphic adenomas, carcinomas and lymphomas with respective cut-offs of 1.292 × 10-3 mm2/s, 1.181 × 10-3 mm2/s and 0.611 × 10-3 mm2/s, respectively. × 10-3 mm2/s. The mean extracellular-extravascular space coefficient was the best parameter to Warthin tumours from the others, with a cut-off of 0.07. CONCLUSIONS: The addition of decision tree prediction models based on multiparametric sequences improves the non-invasive diagnostic performance of parotid gland tumours. ADC and extracellular-extravascular space coefficient are the two best parameters for decision making.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Parotid Neoplasms , Humans , Parotid Neoplasms/diagnostic imaging , Diagnosis, Differential , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Decision Trees , Retrospective Studies , Contrast Media
8.
Hum Brain Mapp ; 44(13): 4754-4771, 2023 09.
Article in English | MEDLINE | ID: mdl-37436095

ABSTRACT

Focal epilepsy is characterized by repeated spontaneous seizures that originate from cortical epileptogenic zone networks (EZN). Analysis of intracerebral recordings showed that subcortical structures, and in particular the thalamus, play an important role in seizure dynamics as well, supporting their structural alterations reported in the neuroimaging literature. Nonetheless, between-patient differences in EZN localization (e.g., temporal vs. non-temporal lobe epilepsy) as well as extension (i.e., number of epileptogenic regions) might impact the magnitude as well as spatial distribution of subcortical structural changes. Here we used 7 Tesla MRI T1 data to provide an unprecedented description of subcortical morphological (volume, tissue deformation, and shape) and longitudinal relaxation (T1 ) changes in focal epilepsy patients and evaluate the impact of the EZN and other patient-specific clinical features. Our results showed variable levels of atrophy across thalamic nuclei that appeared most prominent in the temporal lobe epilepsy group and the side ipsilateral to the EZN, while shortening of T1 was especially observed for the lateral thalamus. Multivariate analyses across thalamic nuclei and basal ganglia showed that volume acted as the dominant discriminator between patients and controls, while (posterolateral) thalamic T1 measures looked promising to further differentiate patients based on EZN localization. In particular, the observed differences in T1 changes between thalamic nuclei indicated differential involvement based on EZN localization. Finally, EZN extension was found to best explain the observed variability between patients. To conclude, this work revealed multi-scale subcortical alterations in focal epilepsy as well as their dependence on several clinical characteristics.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Humans , Epilepsies, Partial/diagnostic imaging , Basal Ganglia/diagnostic imaging , Seizures , Thalamus/diagnostic imaging , Magnetic Resonance Imaging
9.
Neuroradiology ; 65(9): 1395-1403, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37458788

ABSTRACT

PURPOSE: To study the relative contributions of brain and upper cervical spinal cord compartmental atrophy to disease aggressiveness in amyotrophic lateral sclerosis (ALS). METHODS: Twenty-nine ALS patients and 24 age- and gender-matched healthy controls (HC) were recruited. Disease duration and the Revised-ALS Functional Rating Scale (ALSFRS-R) at baseline, 3- and 6-months follow-up were assessed. Patients were clinically differentiated into fast (n=13) and slow (n=16) progressors according to their ALSFRS-R progression rate. Brain grey (GM) and white matter, brainstem sub-structures volumes and spinal cord cross-sectional area (SC-CSA) at C1-C2 vertebral levels were measured from a 3D-T1-weighted MRI. RESULTS: Fast progressors showed significant GM, medulla oblongata and SC atrophy compared to HC (p<0.001, p=0.013 and p=0.008) and significant GM atrophy compared to slow progressors (p=0.008). GM volume correlated with the ALSFRS-R progression rate (Rho/p=-0.487/0.007), the ALSFRS-R at 3-months (Rho/p=0.622/0.002), and ALSFRS-R at 6-months (Rho/p=0.407/0.039). Medulla oblongata volume and SC-CSA correlated with the ALSFRS-R at 3-months (Rho/p=0.510/0.015 and Rho/p=0.479/0.024). MRI measures showed high performance to discriminate between fast and slow progressors. CONCLUSION: Our study suggests an association between compartmental atrophy and disease aggressiveness. This result is consistent with the combination of upper and lower motor neuron degeneration as the main driver of disease worsening and severity in ALS. Our study highlights the potential of brain and spinal cord atrophy measured by MRI as biomarker of disease aggressiveness signature.


Subject(s)
Amyotrophic Lateral Sclerosis , Cervical Cord , White Matter , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Cervical Cord/diagnostic imaging , Magnetic Resonance Imaging , Atrophy/pathology
10.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37293113

ABSTRACT

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epilepsy. Evidence from witnessed and monitored SUDEP cases indicate seizure-induced cardiovascular and respiratory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event. Resting-state fMRI studies have found altered functional connectivity between brain structures involved in cardiorespiratory regulation in later SUDEP cases and in individuals at high-risk of SUDEP. However, those connectivity findings have not been related to changes in cardiovascular or respiratory patterns. Here, we compared fMRI patterns of brain connectivity associated with regular and irregular cardiorespiratory rhythms in SUDEP cases with those of living epilepsy patients of varying SUDEP risk, and healthy controls. We analysed resting-state fMRI data from 98 patients with epilepsy (9 who subsequently succumbed to SUDEP, 43 categorized as low SUDEP risk (no tonic-clonic seizures (TCS) in the year preceding the fMRI scan), and 46 as high SUDEP risk (>3 TCS in the year preceding the scan)) and 25 healthy controls. The global signal amplitude (GSA), defined as the moving standard deviation of the fMRI global signal, was used to identify periods with regular ('low state') and irregular ('high state') cardiorespiratory rhythms. Correlation maps were derived from seeds in twelve regions with a key role in autonomic or respiratory regulation, for the low and high states. Following principal component analysis, component weights were compared between the groups. We found widespread alterations in connectivity of precuneus/posterior cingulate cortex in epilepsy compared to controls, in the low state (regular cardiorespiratory activity). In the low state, and to a lesser degree in the high state, reduced anterior insula connectivity (mainly with anterior and posterior cingulate cortex) in epilepsy appeared, relative to healthy controls. For SUDEP cases, the insula connectivity differences were inversely related to the interval between the fMRI scan and death. The findings suggest that anterior insula connectivity measures may provide a biomarker of SUDEP risk. The neural correlates of autonomic brain structures associated with different cardiorespiratory rhythms may shed light on the mechanisms underlying terminal apnea observed in SUDEP.

11.
Surg Radiol Anat ; 45(8): 1049-1054, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37277665

ABSTRACT

PURPOSE: Although enthesitis is a hallmark of several rheumatologic conditions, current imaging methods are still unable to characterize entheses changes because of the corresponding short transverse relaxation times (T2). A growing number of MR studies have used Ultra-High Field (UHF) MRI in order to assess low-T2 tissues e.g., tendon but never in humans. The purpose of the present study was to assess in vivo the enthesis of the quadriceps tendon in healthy subjects using UHF MRI. METHODS: Eleven healthy subjects volunteered in an osteoarthritis imaging study. The inclusion criteria were: no knee trauma, Lequesne index = 0, less than 3 h of sport activities per week, and Kellgren and Lawrence grade = 0. 3D MR images were acquired at 7 T using GRE sequences and a T2* mapping. Regions of interest i.e., trabecular bone, subchondral bone, enthesis, and tendon body were identified, and T2* values were quantified and compared. RESULTS: Quadriceps tendon enthesis was visible as a hyper-intense signal. The largest and the lowest T2* values were quantified in the subchondral bone region and the tendon body respectively. T2* value within subchondral bone was significantly higher than T2* value within the enthesis. T2* in subchondral bone region was significantly higher than the whole tendon body T2*. CONCLUSION: A T2* gradient was observed along the axis from the enthesis toward the tendon body. It illustrates different water biophysical properties. These results provide normative values which could be used in the field of inflammatory rheumatologic diseases and mechanical disorders affecting the tendon.


Subject(s)
Arthritis, Rheumatoid , Tendons , Humans , Healthy Volunteers , Tendons/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
12.
Magn Reson Med ; 90(3): 875-893, 2023 09.
Article in English | MEDLINE | ID: mdl-37154400

ABSTRACT

PURPOSE: To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS: The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS: Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION: The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.


Subject(s)
Magnetic Resonance Imaging , White Matter , Reproducibility of Results , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Gray Matter , Models, Theoretical , Protons , Macromolecular Substances , Brain/diagnostic imaging
13.
Magn Reson Med ; 90(4): 1328-1344, 2023 10.
Article in English | MEDLINE | ID: mdl-37246894

ABSTRACT

PURPOSE: The acquisition of accurate B1 maps is critical for parallel transmit techniques (pTx). The presaturated turboFLASH (satTFL) method has been widely used in combination with interferometric encoding to provide robust and fast B1 maps. However, typical encodings, mostly evaluated on brain, do not necessarily fit all coils and organs. In this work, we evaluated and improved the accuracy of the satTFL for cervical spine at 7 T, proposing a novel interferometric encoding optimization. The benefits of such improvements were investigated in an exploratory study of quantitative T1 mapping with pTx-MP2RAGE. METHODS: Global optimization of interferometric encoding was implemented by simulating the ability of the satTFL to reconstruct B1 maps, with varying encoding and inclusion of complex noise, inside a region of interest covering the cervical spine. The performance of satTFL before and after optimization was compared to actual flip angle imaging. Optimized and non-optimized B1 maps were then used to calculate pTx pulses for MP2RAGE T1 mapping. RESULTS: Interferometric encoding optimization resulted in satTFL closer to actual flip angle imaging, with substantial gain of signal in regions where non-optimized satTFL could fail. T1 maps measured with non-adiabatic pTx pulses were closer to standard non-pTx results (which used adiabatic pulses) when using optimized-satTFL, with substantially lower specific absorption rate. CONCLUSION: Optimization of the satTFL interferometric encoding improves B1 maps in the spinal cord, in particular in low SNR regions. A linear correction of the satTFL was additionally shown to be required. The method was successfully used for quantitative phantom and in vivo T1 mapping, showing improved results compared to non-optimized satTFL thanks to improved pTx-pulse generation.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Phantoms, Imaging , Spinal Cord/diagnostic imaging
14.
J Magn Reson Imaging ; 58(6): 1826-1835, 2023 12.
Article in English | MEDLINE | ID: mdl-37025028

ABSTRACT

BACKGROUND: Deep learning methods have been shown to be useful for segmentation of lower limb muscle MRIs of healthy subjects but, have not been sufficiently evaluated on neuromuscular disease (NDM) patients. PURPOSE: Evaluate the influence of fat infiltration on convolutional neural network (CNN) segmentation of MRIs from NMD patients. STUDY TYPE: Retrospective study. SUBJECTS: Data were collected from a hospital database of 67 patients with NMDs and 14 controls (age: 53 ± 17 years, sex: 48 M, 33 F). Ten individual muscles were segmented from the thigh and six from the calf (20 slices, 200 cm section). FIELD STRENGTH/SEQUENCE: A 1.5 T. Sequences: 2D T1 -weighted fast spin echo. Fat fraction (FF): three-point Dixon 3D GRE, magnetization transfer ratio (MTR): 3D MT-prepared GRE, T2: 2D multispin-echo sequence. ASSESSMENT: U-Net 2D, U-Net 3D, TransUNet, and HRNet were trained to segment thigh and leg muscles (101/11 and 95/11 training/validation images, 10-fold cross-validation). Automatic and manual segmentations were compared based on geometric criteria (Dice coefficient [DSC], outlier rate, absence rate) and reliability of measured MRI quantities (FF, MTR, T2, volume). STATISTICAL TESTS: Bland-Altman plots were chosen to describe agreement between manual vs. automatic estimated FF, MTR, T2 and volume. Comparisons were made between muscle populations with an FF greater than 20% (G20+) and lower than 20% (G20-). RESULTS: The CNNs achieved equivalent results, yet only HRNet recognized every muscle in the database, with a DSC of 0.91 ± 0.08, and measurement biases reaching -0.32% ± 0.92% for FF, 0.19 ± 0.77 for MTR, -0.55 ± 1.95 msec for T2, and - 0.38 ± 3.67 cm3 for volume. The performances of HRNet, between G20- and G20+ decreased significantly. DATA CONCLUSION: HRNet was the most appropriate network, as it did not omit any muscle. The accuracy obtained shows that CNNs could provide fully automated methods for studying NMDs. However, the accuracy of the methods may be degraded on the most infiltrated muscles (>20%). EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Deep Learning , Neuromuscular Diseases , Humans , Adult , Middle Aged , Aged , Retrospective Studies , Reproducibility of Results , Magnetic Resonance Imaging/methods , Neuromuscular Diseases/diagnostic imaging , Thigh/diagnostic imaging , Muscles , Image Processing, Computer-Assisted/methods
15.
Lancet Neurol ; 22(5): 443-454, 2023 05.
Article in English | MEDLINE | ID: mdl-36972720

ABSTRACT

Individuals with drug-resistant focal epilepsy are candidates for surgical treatment as a curative option. Before surgery can take place, the patient must have a presurgical evaluation to establish whether and how surgical treatment might stop their seizures without causing neurological deficits. Virtual brains are a new digital modelling technology that map the brain network of a person with epilepsy, using data derived from MRI. This technique produces a computer simulation of seizures and brain imaging signals, such as those that would be recorded with intracranial EEG. When combined with machine learning, virtual brains can be used to estimate the extent and organisation of the epileptogenic zone (ie, the brain regions related to seizure generation and the spatiotemporal dynamics during seizure onset). Virtual brains could, in the future, be used for clinical decision making, to improve precision in localisation of seizure activity, and for surgical planning, but at the moment these models have some limitations, such as low spatial resolution. As evidence accumulates in support of the predictive power of personalised virtual brain models, and as methods are tested in clinical trials, virtual brains might inform clinical practice in the near future.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Computer Simulation , Epilepsy/diagnostic imaging , Epilepsy/surgery , Seizures , Brain/diagnostic imaging , Brain/surgery , Electrocorticography , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging , Electroencephalography/methods
16.
J Cardiovasc Magn Reson ; 25(1): 7, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747201

ABSTRACT

BACKGROUND: Heart failure- (HF) and arrhythmia-related complications are the main causes of morbidity and mortality in patients with nonischemic dilated cardiomyopathy (NIDCM). Cardiovascular magnetic resonance (CMR) imaging is a noninvasive tool for risk stratification based on fibrosis assessment. Diffuse interstitial fibrosis in NIDCM may be a limitation for fibrosis assessment through late gadolinium enhancement (LGE), which might be overcome through quantitative T1 and extracellular volume (ECV) assessment. T1 and ECV prognostic value for arrhythmia-related events remain poorly investigated. We asked whether T1 and ECV have a prognostic value in NIDCM patients. METHODS: This prospective multicenter study analyzed 225 patients with NIDCM confirmed by CMR who were followed up for 2 years. CMR evaluation included LGE, native T1 mapping and ECV values. The primary endpoint was the occurrence of a major adverse cardiovascular event (MACE) which was divided in two groups: HF-related events and arrhythmia-related events. Optimal cutoffs for prediction of MACE occurrence were calculated for all CMR quantitative values. RESULTS: Fifty-eight patients (26%) developed a MACE during follow-up, 42 patients (19%) with HF-related events and 16 patients (7%) arrhythmia-related events. T1 Z-score (p = 0.008) and global ECV (p = 0.001) were associated with HF-related events occurrence, in addition to left ventricular ejection fraction (p < 0.001). ECV > 32.1% (optimal cutoff) remained the only CMR independent predictor of HF-related events occurrence (HR 2.15 [1.14-4.07], p = 0.018). In the arrhythmia-related events group, patients had increased native T1 Z-score and ECV values, with both T1 Z-score > 4.2 and ECV > 30.5% (optimal cutoffs) being independent predictors of arrhythmia-related events occurrence (respectively, HR 2.86 [1.06-7.68], p = 0.037 and HR 2.72 [1.01-7.36], p = 0.049). CONCLUSIONS: ECV was the sole independent predictive factor for both HF- and arrhythmia-related events in NIDCM patients. Native T1 was also an independent predictor in arrhythmia-related events occurrence. The addition of ECV and more importantly native T1 in the decision-making algorithm may improve arrhythmia risk stratification in NIDCM patients. Trial registration NCT02352129. Registered 2nd February 2015-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02352129.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Humans , Cardiomyopathy, Dilated/pathology , Prognosis , Stroke Volume , Myocardium/pathology , Contrast Media , Prospective Studies , Ventricular Function, Left , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests , Gadolinium , Magnetic Resonance Spectroscopy , Fibrosis
17.
Brain ; 146(8): 3404-3415, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36852571

ABSTRACT

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Subject(s)
Focal Cortical Dysplasia , Malformations of Cortical Development , Humans , Reproducibility of Results , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Brain/pathology , Magnetic Resonance Imaging/methods
18.
Sci Transl Med ; 15(680): eabp8982, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36696482

ABSTRACT

Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynamical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the personalized model using functional stereoelectroencephalography recordings of patients' seizures. These key parameters together with their personalized model determine a given patient's EZN. Personalized models were further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP workflow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non-seizure-free patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356 prospective patients with epilepsy.


Subject(s)
Brain , Drug Resistant Epilepsy , Epilepsies, Partial , Precision Medicine , Humans , Bayes Theorem , Brain/diagnostic imaging , Brain/surgery , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/surgery , Retrospective Studies , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Models, Biological , Machine Learning
19.
Hum Brain Mapp ; 44(2): 825-840, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36217746

ABSTRACT

Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.


Subject(s)
Epilepsy , Protons , Humans , Magnetic Resonance Imaging/methods , Electroencephalography/methods , Epilepsy/diagnostic imaging , Epilepsy/surgery , Epilepsy/metabolism , Sodium/metabolism
20.
Magn Reson Imaging ; 95: 90-102, 2023 01.
Article in English | MEDLINE | ID: mdl-32304799

ABSTRACT

BACKGROUND: This study evaluates the possibility for replacing conventional 3 slices, 3 breath-holds MOLLI cardiac T1 mapping with single breath-hold 3 simultaneous multi-slice (SMS3) T1 mapping using blipped-CAIPIRINHA SMS-bSSFP MOLLI sequence. As a major drawback, SMS-bSSFP presents unique artefacts arising from side-lobe slice excitations that are explained by imperfect RF modulation rendering and bSSFP low flip angle enhancement. Amplitude-only RF modulation (AM) is proposed to reduce these artefacts in SMS-MOLLI compared to conventional Wong multi-band RF modulation (WM). MATERIALS AND METHODS: Phantoms and ten healthy volunteers were imaged at 1.5 T using a modified blipped-CAIPIRINHA SMS-bSSFP MOLLI sequence with 3 simultaneous slices. WM-SMS3 and AM-SMS3 were compared to conventional single-slice (SMS1) MOLLI. First, SNR degradation and T1 accuracy were measured in phantoms. Second, artefacts from side-lobe excitations were evaluated in a phantom designed to reproduce fat presence near the heart. Third, the occurrence of these artefacts was observed in volunteers, and their impact on T1 quantification was compared between WM-SMS3 and AM-SMS3 with conventional MOLLI as a reference. RESULTS: In the phantom, larger slice gaps and slice thicknesses yielded higher SNR. There was no significant difference of T1 values between conventional MOLLI and SMS3-MOLLI (both WM and AM). Positive banding artefacts were identified from fat neighbouring the targeted FOV due to side-lobe excitations from WM and the unique bSSFP signal profile. AM RF pulses reduced these artefacts by 38%. In healthy volunteers, AM-SMS3-MOLLI showed similar artefact reduction compared to WM-SMS3-MOLLI (3 ± 2 vs 5 ± 3 corrupted LV segments out of 16). In-vivo native T1 values obtained from conventional MOLLI and AM-SMS3-MOLLI were equivalent in LV myocardium (SMS1-T1 = 935.5 ± 36.1 ms; AM-SMS3-T1 = 933.8 ± 50.2 ms; P = 0.436) and LV blood pool (SMS1-T1 = 1475.4 ± 35.9 ms; AM-SMS3-T1 = 1452.5 ± 70.3 ms; P = 0.515). Identically, no differences were found between SMS1 and SMS3 postcontrast T1 values in the myocardium (SMS1-T1 = 556.0 ± 19.7 ms; SMS3-T1 = 521.3 ± 28.1 ms; P = 0.626) and the blood (SMS1-T1 = 478 ± 65.1 ms; AM-SMS3-T1 = 447.8 ± 81.5; P = 0.085). CONCLUSIONS: Compared to WM RF modulation, AM SMS-bSSFP MOLLI was able to reduce side-lobe artefacts considerably, providing promising results to image the three levels of the heart in a single breath hold. However, few artefacts remained even using AM-SMS-bSSFP due to residual RF imperfections. The proposed blipped-CAIPIRINHA MOLLI T1 mapping sequence provides accurate in vivo T1 quantification in line with those obtained with a single slice acquisition.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results , Artifacts , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...